Warning: Some posts on this platform may contain adult material intended for mature audiences only. Viewer discretion is advised. By clicking ‘Continue’, you confirm that you are 18 years or older and consent to viewing explicit content.
Altermagnets, theorised to exist but never before seen, have been measured for the first time and they could help us make new types of magnetic computers
Altermagnets are pretty interesting because their most defining feature is not the magnetic order in the materials. They look like ordinary antiferromagnets where the spins of adjacent atoms point in opposite direction and compensate each other, so no large magnetic fields are created. What differentiate altermagnets from antiferromagnets is how the electrons with different spin behave. When pulling current through altermagnets it will consist of purely spin up electrons along one crystal axis and purely spin down along orthogonal crystal axes. Thus the spin currents have a ‘alternating’ pattern, giving the name altermagnet. This is primarily exciting for the field of ‘spintronics’ which is all about creating technologies using spin currents.
Not all altermagnets are equally interesting, many antiferromagnets can be reclassified to altermagnets but they are generally insulating. (fun fact the first ever measured and textbook antiferromaget MnF2 is actually altermagnetic) So materials discovery of new altermagnets is important to find metallic, semi-metallic or even super conducting altermagnets.
Altermagnets are pretty interesting because their most defining feature is not the magnetic order in the materials. They look like ordinary antiferromagnets where the spins of adjacent atoms point in opposite direction and compensate each other, so no large magnetic fields are created. What differentiate altermagnets from antiferromagnets is how the electrons with different spin behave. When pulling current through altermagnets it will consist of purely spin up electrons along one crystal axis and purely spin down along orthogonal crystal axes. Thus the spin currents have a ‘alternating’ pattern, giving the name altermagnet. This is primarily exciting for the field of ‘spintronics’ which is all about creating technologies using spin currents.
Not all altermagnets are equally interesting, many antiferromagnets can be reclassified to altermagnets but they are generally insulating. (fun fact the first ever measured and textbook antiferromaget MnF2 is actually altermagnetic) So materials discovery of new altermagnets is important to find metallic, semi-metallic or even super conducting altermagnets.
Hmm yes, I understand.
A four-year-old child could understand this! Run out and find me a four-year-old child. I can’t make head nor tail out of it.
Magnet atoms magnet at magnet direction. Altermagnet magnet at 90° magnet direction. Antiferrous magnet magnet at 180° direction
(That’s my takeaway at least)
Spintronics … when real science sounds like made up science.
I made it to ‘spins of adjacent atoms’ and went cross-eyed