Warning: Some posts on this platform may contain adult material intended for mature audiences only. Viewer discretion is advised. By clicking ‘Continue’, you confirm that you are 18 years or older and consent to viewing explicit content.
But capacitors aren’t batteries. Batteries store chemical energy. Capacitors store electrical potential energy. Electronically they behave much differently.
That’s what I do being off-grid. I have my battery bank then a series of Supercaps to essentially act as an on/off ramp//drawbridge and temper quick demands. Kinda like an inverse soft starter so this is suuuuper interesting to me.
Only for certain types of capacitors. In practice they can overlap quite a bit, especially with common aluminium electrolytic capacitors (these form & dissolve complex aluminium oxide & hydroxide layers on the plates).
Headline is not dumb. There are reasons to make a distinction between the two, the most salient one being that capacitors are several orders of magnitude faster to charge and discharge.
However the galvanic potential of lithium is as large as is practically possible. The galvanic potential is what really matters for a battery. Capacitors are nowhere near the joules per weight/volume.
Headline is dumb. If capacitors are better at being batteries than batteries are, they just become the next generation of batteries.
But capacitors aren’t batteries. Batteries store chemical energy. Capacitors store electrical potential energy. Electronically they behave much differently.
Yes they do… including not holding a charge when the differential drops too far.
The real wins are in battery-backed capacitors. Charge the caps fast, then let them keep the batteries topped up.
That’s what I do being off-grid. I have my battery bank then a series of Supercaps to essentially act as an on/off ramp//drawbridge and temper quick demands. Kinda like an inverse soft starter so this is suuuuper interesting to me.
Do you have a link to a guide on his to set this up?
Only for certain types of capacitors. In practice they can overlap quite a bit, especially with common aluminium electrolytic capacitors (these form & dissolve complex aluminium oxide & hydroxide layers on the plates).
Headline is not dumb. There are reasons to make a distinction between the two, the most salient one being that capacitors are several orders of magnitude faster to charge and discharge.
Capacitors can theoretically charge MUCH faster.
However the galvanic potential of lithium is as large as is practically possible. The galvanic potential is what really matters for a battery. Capacitors are nowhere near the joules per weight/volume.