Warning: Some posts on this platform may contain adult material intended for mature audiences only. Viewer discretion is advised. By clicking ‘Continue’, you confirm that you are 18 years or older and consent to viewing explicit content.
Thanks for explaining it!
So systemd-boot finds the kernel in the EFI partition, which it then loads, and then that kernel loads another kernel from the main partition, which is then the full OS.
Is there a reason it’s done this way, and not just the bootloader loads the main kernel?
Also, are the two kernels the same, or does this use two different kernels?
In the case of Dracut, I’m not sure what it does exactly, but the kernels will almost definitely not be identical. In the “EFI kernel”, uneeded modules (meaning most of them) are usually omitted.
You could probably also have different kernels in terms of version number, although it might complicate things. Kinda depends on whether they recycle data structures from the first kernel and whether those remain compatible. I don’t really know whether this is actually done tho.
The reason why multiple kernels (or bootloaders for that matter) are used is that there are different levels of “readiness” in your system. Say you have LVM and a LUKS encrypted partition (in whatever order). Systemctl-boot will load the kernel and it’s initramfs, but can’t be bothered to deal with complicated file system shenanigans. That would complicate the whole program significantly.
So it just loads a Linux kernel which has these capabilities. That kernel can deal with LVM, decrypt the LUKS partition (or ask for a password), mount whatever btrfs nonsense is inside and then hand it over to the proper kernel. The proper kernel can in turn rely on having all its stuff mounted and ready, instead of having to worry about all this.
You could do with just one kernel, but Dracut allows you to rapidly create bootable kernel + initramfs pairs of which you might need multiple (e.g. for dual booting, backup). Moreover, you probably wouldn’t really want it to fiddle with your kernel all the time, especially when it’s customised already.
Thanks for explaining it! So systemd-boot finds the kernel in the EFI partition, which it then loads, and then that kernel loads another kernel from the main partition, which is then the full OS.
Is there a reason it’s done this way, and not just the bootloader loads the main kernel?
Also, are the two kernels the same, or does this use two different kernels?
Sorry for the late reply btw, responses were broken for me
No problem, thanks for replying.
In the case of Dracut, I’m not sure what it does exactly, but the kernels will almost definitely not be identical. In the “EFI kernel”, uneeded modules (meaning most of them) are usually omitted.
You could probably also have different kernels in terms of version number, although it might complicate things. Kinda depends on whether they recycle data structures from the first kernel and whether those remain compatible. I don’t really know whether this is actually done tho.
The reason why multiple kernels (or bootloaders for that matter) are used is that there are different levels of “readiness” in your system. Say you have LVM and a LUKS encrypted partition (in whatever order). Systemctl-boot will load the kernel and it’s initramfs, but can’t be bothered to deal with complicated file system shenanigans. That would complicate the whole program significantly.
So it just loads a Linux kernel which has these capabilities. That kernel can deal with LVM, decrypt the LUKS partition (or ask for a password), mount whatever btrfs nonsense is inside and then hand it over to the proper kernel. The proper kernel can in turn rely on having all its stuff mounted and ready, instead of having to worry about all this.
You could do with just one kernel, but Dracut allows you to rapidly create bootable kernel + initramfs pairs of which you might need multiple (e.g. for dual booting, backup). Moreover, you probably wouldn’t really want it to fiddle with your kernel all the time, especially when it’s customised already.
That makes sense. It looks like a really clever way of letting the boot process allow for basically any arangement. Thanks!