Warning: Some posts on this platform may contain adult material intended for mature audiences only. Viewer discretion is advised. By clicking ‘Continue’, you confirm that you are 18 years or older and consent to viewing explicit content.
You can see this in the example above but perhaps it’s better to use different powers to make things a bit clearer.
2^5=2x2x2x2x2
2^3=2x2x2
(25)/(23)=(2x2x2x2x2)/(2x2x2)
You can cancel 3 of the 2s from the top and bottom of the fraction to be left with 2x2, or 2^2.
I.e. (25)/(23)=2^2
The quicker way to calculate this is doing 2^(5-3) which when you resolve the bracket is obviously just 2^2 or 2x2.
If both numbers in the bracket are the same the bracket will always resolve to 0, which is the same as saying a number divided by itself, any number divided by itself is one so it follows that any number to the power 0 is also 1 (because it’s essentially exactly the same calculation).
This isn’t strictly speaking a proof, but it did help me to accept it as it demonstrates the function that makes it 1.
2^3 = 2x2x2
2^2 = 2x2
(23)/(22) = (2x2x2)/(2x2) = 2
= 2^(3-2)
In general terms:
(xa)/(xb) = x^(a-b)
If a and b are the same number this is x^0 and obviously (xa)/(xa) is one because anything divided by itself is 1.
Hope that helps
Yes, of course, obviously…JFC, what??
2^(a-b) = (2a)/(2b)
You can see this in the example above but perhaps it’s better to use different powers to make things a bit clearer.
2^5=2x2x2x2x2
2^3=2x2x2
(25)/(23)=(2x2x2x2x2)/(2x2x2)
You can cancel 3 of the 2s from the top and bottom of the fraction to be left with 2x2, or 2^2.
I.e. (25)/(23)=2^2
The quicker way to calculate this is doing 2^(5-3) which when you resolve the bracket is obviously just 2^2 or 2x2.
If both numbers in the bracket are the same the bracket will always resolve to 0, which is the same as saying a number divided by itself, any number divided by itself is one so it follows that any number to the power 0 is also 1 (because it’s essentially exactly the same calculation).
Rule = #^0 = # x 1
Don’t ask why…got it.
No not quite, #^0 = 1
Wait, so 5^0 = 1??
Yup
5^0 can be rewritten as 5^(2-2)
5^(2-2) = (52)/(52)
This is a number divided by itself so cancels to 1 every time, regardless of #.
That was pretty complicated, here is a simpler answer I hsve come up with:
1=(2x2x2)/(2x2x2)=2³/2³=2³⁻³=2⁰
If that makes sense to you…
deleted by creator